LES UNITES DE MESURE

1. Introduction:

	Les me	sures in	terviennent o	dans diverses	discipli	nes: géomét	rie, méc	anique	, électricit	é, etc
		Il s'agit donc, pour chaque grandeur mesurable de faire le choix d'une grandeur particulière appelée								
	Un ens	Jn ensemble de telles unités est appelé								
	<u>Définit</u>	<u>Définitions :</u>								
	On appelle Mesure .									
										••••
Jne G	-		e							
2. Le	es grande	urs phv	siaues :							
	0 1 1 1	7	- 4							
	1.		e grandeur p		représe	ntée par un	e lettre	appelé	e "	
	2.	Une	grandeur	physique			par		nombre	concret.
	3.		une relation (ou formule),	les gra	ndeurs doive	ent être	mesur	ée avec le	s unités du
		même système.								
		Exemp	ole :							
				00						

3. Les unités de mesures :

1. Les noms des unités :

Ils s'écrivent toujours avec une **minuscule** comme initiale et s'accordent comme un nom commun même s'ils sont dérivés d'un nom propre.

2. Les symboles :

Ils ne prennent pas la marque du pluriel.

Ils ne doivent pas être suivis d'un point.

Ils se placent toujours après la valeur numérique complète du nombre exprimant la mesure de la grandeur physique.

Remarque:

Si l'unité n'a pas reçu de nom particulier, elle rappelle l'opération qui permet de calculer la mesure de la grandeur correspondante.

Exemple :			

3. Les multiples et les sous-multiples :

Ils sont donnés dans les tableaux ci-dessous :

LES MULTIPLES : (Tableau N°1)

Préfixe	Symbole	Rapport à l'unité
déca		
hecto		
kilo		
méga		
giga		
téra		

LES SOUS-MULTIPLES : (Tableau N°2)

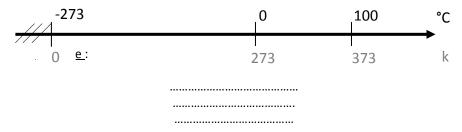
Préfixe	Symbole	Rapport à l'unité
déci		
centi		
milli		
micro		
nano		
pico		
femto		
atto		

Remarque:

Si le symbole d'un multiple ou d'un sous-multiple comporte un exposant, celui-ci se rapporte à l'ensemble du symbole.

Exemple :		
	••••••	

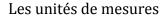
4. Le système international d'unités :


- 1. Il est le seul légal en France depuis le 3 mai 1961.
 - Il existe six grandeurs fondamentales dont les unités sont matérialisées par des étalons ou définies par rapport à une référence physique immuable.
- **2.** Les grandeurs fondamentales sont :

- la longueur exprimée - la masse exprimée - le temps exprimé - l'intensité du courant électrique exprimée - la température thermodynamique exprimée - l'intensité lumineuse exprimée

Remarque:

La température est couramment exprimée en degrés Celsius (°C) alors qu'en physique, il est souvent nécessaire de parler de température thermodynamique qui s'exprime en kelvin (K).


Si les nombres qui expriment ces températures sont différents, par contre les intervalles de température sont égaux.

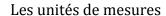
LE SYSTEME S.I. (M.K.S.A. GIORGI)

Tableau N°3:

GRANDEURS	SYMBOLES	UNITES	SYMBOLES
angle plan	α, β	radian	rad
angle solide	Ω	stéradian	sr
LONGUEUR	L, I	mètre	m
aire, superficie	S, s	mètre carré	m ²
volume	V	mètre cube	m ³
TEMPS	t	seconde	S
vitesse angulaire	ω	radian par seconde	rad / s
fréquence	f	hertz	Hz
fréquence de rotation	n	(seconde) ⁻¹	s ⁻¹
vitesse	v	mètre par seconde	m / s
accélération	γ, g	mètre par seconde par seconde	m / s^{-2}
			<u> </u>
MASSE	M, m	kilogramme	kg
masse volumique	ρ, μ	kilogramme par mètre cube	kg/m ³
force	F	newton	N
moment d'une force ou d'un couple	M, T	newton-mètre	Nm
énergie, travail	W	joule	J

puissance	Р	watt	W
pression	р	pascal	Pa, N / m ²
TEMPERATURE	θ, Τ	kelvin	К
température Celsius	θ, t	degré Celsius	°C
intervalle de température	$\theta, \Delta\theta$	kelvin	K
quantité de chaleur	W	joule	J
capacité thermique massique	С	joule par kilogramme et par kelvin	J / kg . K
INTENSITE D'UN COURANT	I	ampère	Α
quantité d'électricité	Q	coulomb	С
champ électrique	E	volt par mètre	V/m
tension, d.d.p., f.é.m.	U, E	volt	V
capacité	С	farad	F
densité de courant	J	ampère par mètre carré	A/m^2
résistance	R	ohm	Ω
conductance	G	siemens	S, A/m
résistivité	ρ	ohm-mètre	Ω m
excitation magnétique	Н	ampère par mètre	A/m
champ magnétique	В	tesla	Т
force magnétomotrice	F	ampère (tour)	Α
moment magnétique	M	ampère- mètre carré	Am ²
flux magnétique	Φ, φ	Weber	Wb
inductance	L, M	Henry	Н
INTENSITE LUMINEUSE	1	candela	cd
flux lumineux	F	lumen	lm
éclairement	E	lux	lx

5. Les exercices d'applications :


Exercice N°1:

Convertir les mesures suivantes à partir des tableaux n°1 et n°2;

Exercice N°3:

A partir des tableaux n°1 et n°2, compléter le tableau ci-dessous :

	nano			unité	kilo	
10 ⁻¹²		10 ⁻⁶				10 ⁶
Alle A			mA	Α		

LES UNITES DE MESURE

6. Introduction:

Les mesures interviennent dans diverses disciplines: géométrie, mécanique, électricité, etc...

Il s'agit donc, pour chaque grandeur mesurable de faire le choix d'une grandeur particulière appelée **UNITE.**

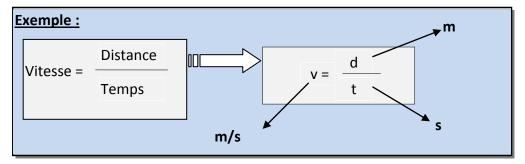
Un ensemble de telles unités est appelé SYSTEME D'UNITES.

Définitions:

On appelle Mesure l'évaluation d'une grandeur par comparaison avec une autre grandeur de même espèce prise pour unité.

Une Grandeur physique est mesurée par un nombre concret, ce nombre doit toujours être suivi d'une unité sans quoi il ne signifie rien.

7. Les grandeurs physiques :


1. Chaque grandeur physique est représentée par une lettre appelée " symbole de la grandeur".

Le temps : t , le volume v, la tension U......

2. Une grandeur physique est mesurée par un nombre concret. Ce nombre doit toujours être suivi d'une unité.

Le temps: s , le volume m², la tension v

3. Dans une relation (ou formule), les grandeurs doivent être mesurée avec les unités du même système.

Les unités de mesures

8. Les unités de mesures :

1. Les noms des unités :

Ils s'écrivent toujours avec une **minuscule** comme initiale et s'accordent comme un nom commun même s'ils sont dérivés d'un nom propre.

2. Les symboles :

Ils ne prennent pas la marque du pluriel.

Ils ne doivent pas être suivis d'un point.

Ils se placent toujours après la valeur numérique complète du nombre exprimant la mesure de la grandeur physique.

Remarque:

Si l'unité n'a pas reçu de nom particulier, elle rappelle l'opération qui permet de calculer la mesure de la grandeur correspondante.

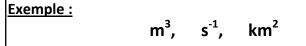
Exemple :

masse volumique : kg / m³, vitesse angulaire : rad / s...

3. Les multiples et les sous-multiples :

Ils sont donnés dans les tableaux ci-dessous :

LES MULTIPLES : (Tableau N°1)


Préfixe	Symbole	Rapport à l'unité
déca	da	10=10 ¹
hecto	h	100=10 ²
kilo	k	1000=10 ³
méga	M	1 million=10 ⁶
giga	G	1 milliard =10 ⁹
téra	T	10 ¹²

LES SOUS-MULTIPLES : (Tableau N°2)

Préfixe	Symbole	Rapport à l'unité
déci	d	0.1=10 ⁻¹
centi	С	0.01=10 ⁻²
milli	m	0.001=10 ⁻³
micro	μ	1 millionième=10 ⁻⁶
nano	n	1 milliardième = 10 ⁻⁹
pico	р	=10 ⁻¹²
femto	f	=10 ⁻¹⁵
atto	а	=10 ⁻¹⁸

Remarque:

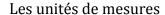
Si le symbole d'un multiple ou d'un sous-multiple comporte un exposant, celui-ci se rapporte à l'ensemble du symbole.

9. Le système international d'unités :

- 1. Il est le seul légal en France depuis le 3 mai 1961.
 - Il existe six grandeurs fondamentales dont les unités sont matérialisées par des étalons ou définies par rapport à une référence physique immuable.
- **2.** Les grandeurs fondamentales sont :
 - la longueur exprimée en mètre (m)
 - la masse exprimée en gramme (g)
 - le temps exprimé en seconde (s)
 - l'intensité du courant électrique exprimée en ampère (A)
 - la température thermodynamique exprimée en kelvin (K)
 - l'intensité lumineuse exprimée en candela (cd)

Remarque:

La température est couramment exprimée en degrés Celsius (°C) alors qu'en physique, il est souvent nécessaire de parler de température thermodynamique qui s'exprime en kelvin (K).


Si les nombres qui expriment ces températures sont différents, par contre les intervalles de température sont égaux.

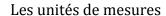
0 °C correspond à 273 K. 100°C correspondent à 373 K. 300 K correspondent à 27°C.

LE SYSTEME S.I. (M.K.S.A. GIORGI) Tableau N°3:

GRANDEURS	SYMBOLES	UNITES	SYMBOLES
angle plan	α, β	radian	rad
angle solide	Ω	stéradian	sr
LONGUEUR	L, I	mètre	m
aire, superficie	S, s	mètre carré	m ²
volume	V	mètre cube	m ³
TEMPS	t	seconde	S
vitesse angulaire	ω	radian par seconde	rad / s
fréquence	f	hertz	Hz
fréquence de rotation	n	(seconde) ⁻¹	s ⁻¹
vitesse	v	mètre par seconde	m/s
accélération	γ, g	mètre par seconde par seconde	m/s^{-2}
MASSE	M, m	kilogramme	kg
masse volumique	ρ, μ	kilogramme par mètre cube	kg/m³
force	F	newton	N
moment d'une force ou d'un couple	М, Т	newton-mètre	Nm
énergie, travail	W	joule	J

puissance	Р	watt	W	
pression	р	pascal	Pa, N / m ²	
·	ľ			
TEMPERATURE	θ, Τ	kelvin	K	
température Celsius	θ, t	degré Celsius	°C	
intervalle de température	$\theta, \Delta\theta$	kelvin	K	
quantité de chaleur	w	joule	J	
capacité thermique massique	С	joule par kilogramme et par kelvin	J / kg . K	
INTENSITE D'UN COURANT	1	ampère	Α	
quantité d'électricité	Q	coulomb	С	
champ électrique	E	volt par mètre	V / m	
tension, d.d.p., f.é.m.	U, E	volt	V	
capacité	С	farad	F	
densité de courant	J	ampère par mètre carré	A/m^2	
résistance	R	ohm	Ω	
conductance	G	siemens	S, A/m	
résistivité	ρ	ohm-mètre	Ω m	
excitation magnétique	Н	ampère par mètre	A / m	
champ magnétique	В	tesla	Т	
force magnétomotrice	F	ampère (tour)	Α	
moment magnétique	M	ampère- mètre carré	Am ²	
flux magnétique	Φ, φ	Weber	Wb	
inductance	L, M	Henry H		
INTENSITE LUMINEUSE	1	candela	cd	
flux lumineux	F	lumen Im		
éclairement	E	lux lx		

10. Les exercices d'applications :


Exercice N°1:

Convertir les mesures suivantes à partir des tableaux n°1 et n°2;

Exercice N°2:

A partir des tableaux n°1 et n°2, compléter le tableau ci-dessous :

	nano			unité	kilo	
10 ⁻¹²		10 ⁻⁶				10 ⁶
Alle A			mA	Α		

