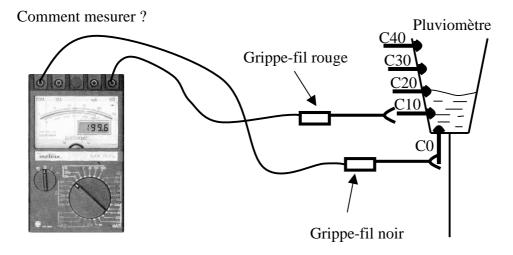
ETUDE STRUCTUREL DE FP1 (CAPTER)

Objectif

L'élève devra être capable :

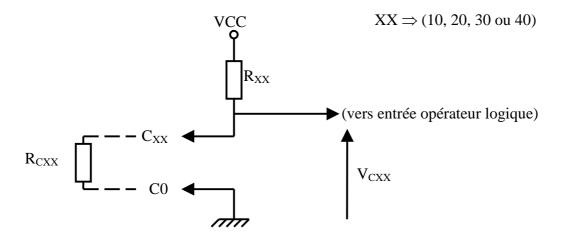

- + de mesurer une tension et une résistance à l'aide d'un multimètre.
- + d'établir la relation entre la tension de sortie et la résistance d'entrée de FP1.
- + de dimensionner et choisir les quatre résistances.
- + d'évaluer que la fonction "capter" (FP1) est assurée.

Etude

Principe: Tout matériau possède une résistivité y compris l'eau. Ainsi la variation de résistance entre deux électrodes correspond à la présence ou l'absence d'eau.

1. A l'aide d'un ohmmètre, relever les valeurs ohmiques de chaque capteur que l'on notera R_{C10} , R_{C20} , R_{C30} et R_{C40} en complétant le tableau suivant :

	C10	C20	C30	C40
Avec				
EAU				
Sans EAU				


Conseils:

- * Remplir le pluviomètre au fur et à mesure avec la bouteille d'eau
- * Vider le pluviomètre dans le lavabo de la salle.
- Il est possible que la valeur lue à l'ohmmètre ne soit pas stable à cause du phénomène d'électrolyse, dans ce cas vous noterez la valeur moyenne

TP2 FP1 1 / 6

2. Pour pouvoir obtenir une information logique sur la présence ou non d'eau sur le capteur on propose d'utiliser le schéma structurel suivant correspondant à FP1 :

- * V_{CXX} sera connectée à des opérateurs logiques de type CMOS (40xx)
- * VCC = 9V

On souhaite ici déterminer les valeurs de R10, R20, R30 et R40

- → A partir du mémotech aux pages 2.88 et 2.91 :
- 2.1. Rappeler pour quelle plage de tension d'entrée d'un opérateur logique correspond un niveau logique "0" et "1".
- 2.2. Quel est le courant maximum consommé pour une entrée au niveau haut et bas.
- 2.3. Lorsqu'il n'y a pas d'eau sur un capteur on souhaite avoir un niveau logique "1".
 - 2.3.1. Dessiner le schéma structurel équivalent vu les valeurs de R_{CXX} dans ce cas.
 - 2.3.2. Indiquez sur ce schéma le courant I_{IH} (et son sens) et la tension minimum acceptable pour V_{CXX} .
 - 2.3.3. Pour les quatre capteurs, déterminer la valeur minimum (R_{XXmin}) et maximum (R_{XXmax}) que l'on puisse mettre pour avoir une tension V_{CXX} correcte.

	C_{XX}
R _{XXmin}	
R _{XXmax}	

- 2.4. Lorsqu'il y a de l'eau sur un capteur on souhaite avoir un niveau logique "0".
 - 2.4.1. Redessiner le schéma structurel en tenant compte de R_{CXX}.
 - 2.4.2. Placer sur ce schéma I_{IB}, I_{RCXX}, I_{RXX} et leurs sens.
 - 2.4.3. Pour les quatre capteurs, quelle est la valeur maximale de R_{XX} (R_{XXmax}) possible pour un fonctionnement correcte
 - 2.4.3.1. Que vaut dans ce cas I_{RXX} .
 - 2.4.3.2. Etablir l'expression de $V_{CXX} = f(R_{CXX}, I_{IB})$

TP2 FP1 2 / 6

2.4.3.3. D'après les valeurs de R_{CXX} et I_{IB} , compléter le tableau suivant sur votre compte rendu :

	C10	C20	C30	C40
R _{CXX} (ohm)				
V _{CXX} (volt)				
Comparer V _{CXX} à la tension de seuil de basculement d'une entrée type CMOS Répondre par Supérieure ou Inférieure				
En déduire le niveau logique que verra l'entrée de l'opérateur logique Répondre par "0" ou "1"				

- 2.4.4. On souhaite déterminer R_{XXmin}
 - 2.4.4.1. Etablir l'expression de $R_{XX} = f(VCC, V_{CXX} \text{ et } I_{RXX})$
 - 2.4.4.2. Etablir l'expression de $I_{RXX} = f(I_{RCXX} \text{ et Iib})$
 - 2.4.4.3. Etablir l'expression de $I_{RCXX} = f(V_{CXX} \text{ et } R_{CXX})$
 - 2.4.4.4. Déduire de ces trois expressions $R_{XX} = f(VCC, V_{CXX}, R_{CXX} \text{ et } I_{IB})$ puis sortir de cette expression $V_{CXX} = f(R_{XX}, VCC, R_{CXX} \text{ et } I_{IB})$
 - 2.4.4.5. Que peut-on dire de l'évolution de V_{CXX} si R_{XX} diminue et que risque-t-on alors.
 - 2.4.4.6. D'après la valeur limite de V_{CXX} on peut donc calculer la valeur de R_{XXmin} . Compléter le tableau suivant

	C10	C20	C30	C40
R _{CXX}				
R_{Xmin}				

- 2.5. Le choix de R_{XX} doit correspondre à un fonctionnement correct lorsqu'il y a de l'eau ou pas. On dispose uniquement de la série E12.
 - 2.5.1. Choisissez une valeur qui semble vous convenir (éviter d'être trop proche de R_{XXmin} et R_{XXmax}).

R10min =	R10max =	R10choisie =
R20min =	R20max =	R20choisie =
R30min =	R30max =	R30choisie =
R40min =	R40max =	R40choisie =

TP2 FP1 3/6

2.5.2. A partir de R_{XX} choisie, calculer les tensions V_{CXX} correspondantes.

	VC10	VC20	VC30	VC40
Avec EAU				
Sans EAU				

3.	Relevés	expérimentaux

- 3.1. Pour chaque capteur vous câblerez le schéma correspondant en utilisant des grippes-fils.
 - 3.1.1. A l'aide d'un voltmètre relever la tension V_{CXX} avec ou sans eau puis comparer avec les valeurs théoriques.

	VC10 théorique	VC10 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
	VC20 théorique	VC20 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
	VC30 théorique	VC30 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
			_
_	VC40 théorique	VC40 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			

3.1.2. Quelle négligence pourrait être la raison de ces écarts.

TP2 FP1 4 / 6

3.2. Pour ce rapprocher des calculs théoriques on câblera en plus une entrée d'un opérateur inverseur (4069) alimenté en 9V.

3.2.1. Effectuer à nouveau les mesures puis compléter les tableaux.

	VC10 théorique	VC10 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
	_		_
	VC20 théorique	VC20 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
	VC30 théorique	VC30 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			
	VC40 théorique	VC40 mesurée	Ecart (en %)
Avec EAU			
Sans EAU			

3.2.2. Les écarts ont-ils alors diminué et comment expliquer qu'ils ne soient pas nuls.

TP2 FP1 5 / 6